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Introduction

o ML Is powerful paradigm for optimal and automated control and calibration
* real-time control for detectors = online data processing/selection (triggering)
* real-time control for accelerators = efficient beam operation

o ML Is computationally expensive — but less expensive than data movement

* Plan for this talk
*Will not make the case for ML or real-time processing, hopefully youve already been convinced!

* Discuss system architecture considerations for ML deployment in real-time systems
* Present a few examples - across the full spectrum
* Open-ended thoughts on future challenges




Outline

® System level goals and constraints
e Bandwidth, latency, and processing technologies

® ML in trigger — techniques and examples
e (ptimized algorithms, implementations, tools (see Dylans talk]
® [ xamples:
e Reconfigurable ASICs (see farahs talk]
o (MS Muon Trigger
e SUNIC

® (Open challenges and food for thought
e (ontinuous learning (w/accelerator control example)

® [raining samples - online learning, transfer learning, domain adaptation



Relative Energy Cost
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Adapted from Horowitz 100 1000 10000

Moving data Is expensive

Universal struggle — reduce data as close to the source as possible vs important data FOMO
ML gets us closer to enjoying the best of both worlds?
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An example of an extremely heterogeneous real-time system

CMS Experiment

40MHz collision rate

~1B detector channels FPGA filter stack
~Us latency

10s Gb/s

~5 kHz

On-detector 10s Tb/s Worldwide

ASIC compression o0 i computing grid

~100ns latency TNy T E xabyte-scale
datasets

On-prem CPU/GPU

fFilter farm
~100 ms latency
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Slides from Jin, Phil

ASIC, FPGA

FPGA, TPU, GPU, CPU
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FLEXIBILITY

T

Guidelines:

> 100 Gbps throughput

< Tms computational latency
< 10W power budget

ASICs

EFFICIENCY




ASICs

ENGINES

" Cerebras Wafer Scale Engine
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Heterogeneous, hardware-constrained multi-tiered systems

Collision ~10ps
® >
Endcap Endcap Global
x96/board Stage 1 Stage 2 Calorimeter
~40 Thps ~20 Thps ~2 Thps
~4000 links FPGA ~2000 links FPGA ~200 links FPGA 1
x48 boards x24 boards x9 boards
i a-; Particle objects

+ features

Raw Data




LHC L1 FPGA Trigger as task-based event processing
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LHC L1 FPGA Trigger as task-based event processing

[ TRACK FINDER ] EMTF OMTF BMTF L1

mMm

G
<
X

Each little box 1s a customized compute microarchitecture for a
specific task - a huge job

Can we make ML easily accessible at this stage?

What about when we leave custom embedded systems and go to off-
the-shelf computing? How to integrate options beyond CPU? GPU?




Guiding principles

e | have yet to talk about any specific (ML) algorithm or network architecture — there are many
approaches, existent and in development

e \ery Interesting to see the many different 1deas in this workshop

* Designing a real-time, resource/latency constrained system adds additional axes of
optimization — try to build an adaptable, flexible, scalable system

* Accessible at each layer of data processing

ML provides powerful data reduction techniques, has the potential to account for unknown
unknowns
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Efficient ML In Grigger
— Gechniques and examples



{algorithms, implementations, tool flows for}

A
Efficient ML In Grigger
— Gechniques and examples



Algorithms:
eq AlexNet to SqueezNet/OnceforAll, NAS

Implementations:
eqg Quantization, Pruning, Dataflow

Tool flows:
eq IRs, synthesis, EDA

APPLICATIONS
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fastmachinelearning.org/hls4ml

hisaml: s codesign workflow!

Keras

TensorFlow e
PyTorch .
h I 4 I Co-processing kernel '

model
HLS )
U conu:rssion 7 COMPILER
Custom firmware
design
Usual ML

software workflow \Z f Menbr

m N PYTORCH \tune cggii%gration/ Catapult

+ reuse/pipeline
Tenscl:r @ O N N X

See Dylan Rankin’s talk!
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Examples

* [he frontest end of the detector - reconfigurable ASIC dat

o |Level-1FPGA trigger

3 COMPression

deployment

 Efficient deployment of coprocessors In trigger

CMS Experiment

40MHz collision rate

~1B detector channels filter stack

On-detector
ASI1C compression

\=-100ns latency

~Hs latency

1Y 10s Gb/s 5
/ = ~5 kHz -
’ £ 7 . J /\/ Oua 3 e taco
i / y .
- /.f / 10s Tb/s Worldwide
S, 100s kHz t id
N S computing gri
y 4 J—— E xabyte-scale
3 datasets
On-prem CPU/GPU

\ filter farm
\_ ~100 ms latengy
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Al ASIC

|npu;|mage On-detector ASIC
///:\
e
g ///\::. e )
N
- \\\\ 0,
N ik
\_ _J

Convolutional + Dense

Encoded
image

Di Guglielmo, Fahim, Herwig, et al, arXiv: 2105.01683

Off-detector

e Enable more computationally complex compression algorithms

e (ustomize the compression algorithm per sensor location

* Adapt the algorithm for changing conditions, new 1deas

Fixed algorithm architecture, but allow
weights to be reconfigurable

Decoded image

TN

programmable logic NN
////\
// N
~ : ) ///:\\\
@ _ . /// \\\\
L i y d N\
Decode or process
encoded image
Requirements
Rate 40 MHz
Total 1onizing dose 200 Mrad
High energy hadron flux 1 %107 cm?/s
Metric Simulation Target
Power 48 mW <00 mW

See Farah Fahim’s talk!

Jpen questions, how to optimally bulld latent space, use representation downstream?
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CMS Trigger TDR

Case study: muon trigger upgrade

Barrel (DT+RPC) Overlap (DT+CSC+RPC)
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EMTF = BDT (external memory] % 50 100 150 200 250 300 350
EMTF++ = fully connected NN PU
~3x reduction in the trigger rate for neural network!
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EMT Dense Network
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C)

-----
A ..ot 0

2.5 9.4°

A Inference tlme 280 ns

.. R .. n.,. N em em Y mmwm e

oo 154°

| 2.1 14.0°

22 126°
3 115
>4 104°

28 7.0°
3.0 5.7°
4.0 21°
5.0 0.77°

(DdH+0SD+INW3D) deopu3z

trigger upgrade

(kHZ]

CMS Phase-2 Simulation

CMS Trigger TDR

14 TeV
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Open questions, how (ot
monitor, and calibrate such
slgorithms? Can/should

automate updates?

More discussion on this later...
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- COMMUNICATIONS
Compute acceleration

Computer Architecture

Agriculture Technology
Monitoring Nolse Pollution
The Computationid Sprinting Game

Algorithm

Integration

How to accommodate an unknown number of algorithms on an unknown hardware platform?
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SONIC

Services for Optimized Network Inference on Coprocessors

Flexible - optimize the hardware based on task; no neec -

[o support many ML frameworks In experiment software

Adaptable - right-size the system to the task, you choose - \ é

[(he number of coprocessors based on computing needs

.

Scalable - coprocessor need not be co-located next to
existing CPU infrastructure; common software framework
kubernetes COPROCESSOR #3

GPU FPGA,ASIC)

docker

Ncpu I= Ncoprocessor
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Results EE
%lo‘ * IOS
g {*° 3
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i 1Fi - Z.p | CMS -
Demonstrated significant and efficient =T @L
acceleration of LHC/ProtoDUNE tasks b
Simultaneous processes
Broad range of tasks — cluster calibration, jet tagging, ATy
. ML module non-ML modules Total
COSMICS ]D, Grdph NNS CPU only 220 110 330
CPU + GPUaaS 13 110 123
| | | 250
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- _ € 200 .
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2100 3
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Open-ended thoughts and
fubure challenges




Continuous learning setup

—> Environment variables

Online Agent

Compute Reward
for Acbion, and Train

Offline Workflow

Monitoring and
DatGa Archive

FNAL, JLab, PNNL, UCSD collaboration
arXiv: 2011.07371
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FNAL, JLab, PNNL, UCSD collaboration
arXiv: 2011.07371

Continuous learning setup

—> Environment variables

| Online Agent

1111111

- —— Data
Oﬂllne womﬂow 103.46 1 —— Digital Twin

Monitoring and % W M
Data Archive Z i

400 6
Time samples

—— Data
—— Digital Twin

Yo

400 6
Time samples

Action | Compute Reward
for Acbion, and Train

B:IMINER —-

| | | &

S © © © o © o o o &
[ee] [e)} = N o N = (o)} (o] N
% o

N

o

o

LSTM-based network using
Deep Q-learning framework
for surrogate model to mimic

behavior of Booster
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FNAL, JLab, PNNL, UCSD collaboration
arXiv: 2011.07371

Continuous learning setup

—> Environment variables
! Online Agent Offiine Workflow o o

................ L
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400 6
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LSTM-based network using
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28



Continuous learni

DNN-based ensemble

‘model for RL online agent

Total Reward
| |
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from RL approach

2000
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Action

Online Agent

Compute Reward

Offline Workflow

FNAL, JLab, PNNL, UCSD collaboration

arxiv: 2011.07371

Reduced beam losses predicted

1111111

. . E 103.424
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Data Archive o 10338,

3333333
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;
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—— Digital Twin

400 6
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LSTM-based network using
Deep Q-learning framework
for surrogate model to mimic
behavior of Booster
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Challenges

Configuration like this with reconfigurable
welghts can be expensive, what about partially

reconfigurable weights/activiations?
eq tiny transfer learning, https://arxivorg/abs/2007.11622

Data movement 1s expensivel
Can training data be transient?
Should we put the training hardware closer?

> Environment variables

| Online Agent

Offline Workflow

Monitoring and

Data Archive

!
model

Is an optimized implementation able to
generalize to all detector/accelerator

conditions?
eq hitps://arxivorg/abs/210211289

Action ‘ Compute Reward
for Action, and Train




Outlook

e Real-time ML deployment still evolving — but it's very promising

e Alot of progress, quickly

* In rapidly moving space, considerations for system desl

e Examples given from sensor Integration front-enc

toF

gn that Is bot

DGA filter stac

N performant but flexible

K, [0 coprocessors

* How (o balance optimized performance and hardware implementations with generalizability

and Interpretability?
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